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Linear Quantum Enskog Equation. 
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D. Loss t,2 

Received December 18, 1989 

This is the second part of a work concerned with the quantum-statistical 
generalization of classical Enskog theory, whereby the first part is extended to 
spatially inhomogeneous fluids. In particular, working with Liouville operators 
and using cluster expansions and projection operators, we derive the 
inhomogeneous linear quantum Enskog equation and express the dynamic 
structure factor and the nontocal mobility tensor in terms of the corresponding 
quantum Enskog collision operator. Thereby static correlations due to excluded 
volume effects and quantum-statistical correlations due to the fermionic 
(bosonic) character of the pairwise strongly interacting particles are treated 
exactly. When static correlations are neglected, this Enskog equation reduces to 
the inhomogeneous linear quantum Boltzmann equation (containing an 
exchange-modified t-matrix). In the classical limit, the well-known linear revised 
Enskog theory is recovered for hard spheres. 

KEY WORDS:  Quantum kinetic theory, linear; dynamic structure factor; 
nonlocal mobility; Liouville operators; cluster expansions; static, dynamic, and 
quantum-statistical correlations; inhomogeneous quantum Enskog equation, 
linear. 

1. I N T R O D U C T I O N  

In a preceding paper  (1) (hereafter referred to as I) we derived the quan tum-  

statistical general izat ion of the l inear revised Enskog equat ion  by making  
use of a recently developed superoperator  formalism (2-4) (See I for a more 

general in t roduct ion) .  This generalized kinetic equat ion  is an extension of 

the l inear  q u a n t u m  Bol tzmann  equa t ion  and is applicable to dense no rma l  
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quantum fluids consisting of fermions (bosons) which interact via an 
arbitrary short-range central pair potential. Thereby, as an extension of the 
usual Enskog theory (5-12~ of classical hard-sphere systems, effects of finite 
interaction range are taken into account. 

However, the formalism in I (as well as in refs. 2-4) was restricted to 
spatially homogeneous systems. The objective of the present paper, there- 
fore, is to extend this formalism to spatially inhomogeneous quantum 
fluids. 

The central quantity of interest here is a space-dependent one-particle 
equilibrium time correlation function from which physically important 
functions, such as the dynamic structure factor and the external nonlocal 
mobility tensor, are obtained. The microscopic evaluation of this quantum 
time correlation function is performed in the Liouville space formalism and 
makes use of cluster expansions and projection operators. The main advan- 
tage of this approach over other formalisms, such as Green's function 
techniques, is that dynamic and static correlations are always clearly 
separated. This is crucial in order to perform an Enskog-type approxima- 
tion because in this approximation the dynamic and static parts are treated 
differently. 

In analogy to the classical hard-sphere case, it is reasonable to expect 
this different treatment of statics and dynamics to be consistent (which, 
however, we do not demonstrate here) and to lead to good agreement with 
experimental data. We shall elaborate on this point in future work by 
applying the results obtained here to a specific example. 

The derivation presented here runs largely parallel to that given before 
for homogeneous fluids. ~1~ Therefore, besides some unavoidable repeti- 
tions, we shall discuss only those points of the derivation in detail which 
are new and due to the spatial inhomogeneity. 

The paper is organized as follows. In Section 2, the problem to be con- 
sidered is defined and some important relations between our time correla- 
tion function, the dynamic structure factor, and the external nonlocal 
mobility tensor are given. In Section 3, we derive a Dyson-equation-like 
formula (containing a generalized collision operator) for the time correla- 
tion function. Here we introduce projection operators and cluster expan- 
sion techniques and prove a factorization theorem which allows us to 
obtain a closed equation. The Enskog approximation is explained and per- 
formed in Section 4, leading to the inhomogeneous linear quantum Enskog 
equation. There we also express the dynamic structure factor and the 
mobility tensor in terms of the linear quantum Enskog collision operator 
BIQE(z). In Section 5, we show that B~E(z) reduces to the linear quantum 
Boltzmann collision operator (with exchange-modified scattering cross sec- 
tion) when static correlations are neglected. In Section 6, we consider the 
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classical limit and show that B~E(z) reduces to the classical linear revised 
Enskog collision operator for hard spheres as given by van Beijeren and 
Ernst. (1~ This demonstration is based on functional derivative techni- 
ques. Some conclusions are gathered in Section 7. Most of the technical 
details are deferred to the Appendices A D. 

2. C O R R E L A T I O N  F U N C T I O N S  

We consider a normal quantum fluid of N identical pairwise inter- 
acting fermions (bosons) of mass m enclosed in a periodic box of 
volume f2 at temperature [I-I=kBT (kB is Boltzmann's constant). The 
Hamiltonian H of this system is given as 

N 

H = H o + V =  ~ Ho(i)+ ~ V U (2.1) 
i = 1  l ~ i < j < ~ N  

with 

26  
Ho(i ) = -__z_, (2.2) 

2m 

and 

v~= v(IL- tjl) (2.3) 

Pi and r i are the momentum and position operators, respectively, of the ith 
particle. V is a short-range pair-interaction potential that depends only on 
the relative coordinates of the particles i and j. 

The main focus of this work will be an evaluation of equilibrium one- 
particle time correlation functions of microscopic densities in this quantum 
fluid. Such correlation functions can be expressed in terms of a basic space- 
and time-dependent correlation function Cab(r, r'; t) given by 

C.b(r, r'; t) = (a(r ;  t) b ( r ' ) )  = Tr p a(r; t) b(r') (2.4) 

where p is the canonical density matrix, 

p = Z  le ~n, Z = T r e  -#~/ (2.5) 

The microscopic densities a(r) and b(r') are given by sums of one-particle 
operators of the form 

N N 

a(r) = ~ ai(r), b(r') = ~ bi(r') (2.6) 
i = 1  i = 1  
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with 

a/(r) = 1 6 ^ { (p~), 6 ( r -  re) } 
(2.7) 

bi(r, )=  1 - ^ {b(pi), 6(r' - fi)} 

where the braces denote anticommutators. ~i(O~) and 5(~) are arbitrary 
functions of the momentum operator ~ only (examples are given below). 

The time dependence of a(r; t) is given in the Heisenberg picture and 
reads explicitly (we set h = 1) 

a(r; t) = eim a(r ) e - iHt = eir' a(r ) (2.8) 

Here we have introduced the Liouville operator L = L(1 ... N) defined by 
La = [H, a], with 

where 

N 

L = L o + L v  = ~ Lo(i) + ~ L U (2.9) 
i = 1  l < ~ i < j ~ N  

Lo(i) a = EHo(i), a] (2.10) 

L u a =  [Vo,  a] (2.11) 

The Liouville operator belongs to the class of superoperators (14'15) which 
are formally defined as linear operators acting on ordinary Hilbert-space 
operators. Further superoperators will be introduced below. 

Due to the translational invariance of H, we can replace the computa- 
tion of C~b(r, r'; t) by an equivalent computation of its Fourier and Laplace 
transform C~b(q; Z) defined by 

fo f C~b(q;z)= d t e  -~t d ( r - r ' ) { e x p [ - i q ' ( r - r ' ) ] }  C~b(r--r',O;t) 

Re z > 0 (2.12) 

Explicitly, we have 

Cab(q; Z) = ~ dt e Zt(a(q; t) b( - q))  

with 
N 

a(q)= Z ai(q) 
i = 1  

ai(q) = 1{~(~,), exp(-- iq,  fi)} 

(2.13) 

t2.14) 



Linear Quantum Enskog Equation 471 

and analogously for b ( -  q). The Fourier wave vector q is a measure of the 
spatial imhomogeneity of our quantum fluid. In the following we consider 
only q ~0 ,  with the consequence that in this case (a(q; t ) )  = ( b ( - q ) )  =0.  
The homogeneous case q = 0 was treated in / .  

As a first important example, let us consider the dynamic structure 
factor S(q; co). This quantity is of interest because it can be measured by 
means of neutron scattering experiments (see, e.g., refs. 12 and 14; for the 
interpretation of neutron scattering data on classical liquids with the help 
of Enskog's theory, see ref. 16 and the references given therein). 

Usually S(q; co) is defined as 

f+c~3 
S(q; co) =~-~ dt e ~ ( n ( q ;  t) n ( - q ) )  (2.15) 

where 

N 
n(q) = ~ exp(--iq" f"~) (2.16) 

i=1 

The dynamic structure factor can now be expressed in terms of our basic 
correlation function Cab(q; z): 

s 
S(q; co) = -- lim Re C,b(q; e - ico) (2.17) 

7g e ~ 0  + 

with a (q )=  b + ( q ) =  n(q). Here Re denotes the real part. 
As second example, let us mention the external mobility tensor 

#,~(q;co), which describes the change of the particle current in linear 
response to an externally applied potential. From this transport coefficient 
one immediately obtains, e.g., the electrical conductivity, the dielectric con- 
stant, or the density susceptibility (for the explicit forms of these relations 
see chapter 4.5 of ref. 13). The mobility reads explicitly ~13) 

#~(q; co) = ~ dte  '~~ d 2 ( j ~ ( q ; t - i A ) j ~ ( - q ) )  (2.18) 

with the current density operator 

j ( q ) =  ~ j i (q )=~m {~i, e x p ( - i q . ~ i )  } (2.19) 
i = l  i=1 

Due to spatial isotropy we have, by choosing q = (0, 0, q), 

~ ( q ;  co) = 6 ~ ( q ;  co) (2.20) 
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with #11 =#22 being the transverse (to q) and #33 the longitudinal (to q) 
components. These components can also be written in terms of our basic 
correlation function Cab(el;z). Indeed, expressing #~  in the eigenstates 
of the full Hamiltonian H Lehmann representation) and using that 
j ~ ( - q ) +  =j~(q), we find 

l . f-For.) 
#~=(q; co ) : 7 s lim+ - oo 

. f 

dco' Re ,u~(q, co ) (2.21) 
co--co'+ it 

where the real part of #~= is given by 

1 - -  e Ba~ 
Re/~=~(q; CO) - - -  lim Re Cab(el; e -- ico) (2.22) 

CO e ~ O  + 

with a(e l )=b+(q)=j~(q) .  Taking the imaginary part of Eq. (2.21), one 
obtains a Kramers-Kronig relation (13 15) between real and imaginary parts 
of #~.  We note that (m/n)Re /A l (q ;  co), where n = N/f2 is the density, 
represents the quantum version of the transverse-momentum autocorrela- 
tion function. (12a7) The longitudinal part, Re/~33, on the other hand, is 
connected with the dynamic structure factor via the relation 

.Q q2  

S(q; co) - rcco e -~~ - ~  Re #33(el;  CO) (2.23) 

as is easily shown by performing partial integrations and by making use of 
the continuity equation 

h(q; t) + iq "j(q; t) = 0 (2.24) 

3. CLUSTER EXPANSION A N D  FACTORIZATION T H E O R E M  

Having motivated the consideration of the correlation function 
Cab(el; Z) in the last section, we shall now turn to the evaluation of this 
quantity in the Enskog approximation. The procedure will be very similar 
to the one discussed in I. In particular, this means that we make use of 
cluster expansion techniques in combination with projection operators. The 
aim thereby is to derive a Dyson-equation-like formula for superoperators 
with a generalized collision operator which will be evaluated in the Enskog 
approximation. In order to clearly exhibit the main ideas of this procedure, 
we defer most of the technical steps to the Appendices. 

To begin with, let us first rewrite the correlation function Cab(el;z), 
given in Eq. (2.13), in a form where the restriction in the trace operation 
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Tr due to Fermi-Dirac (FD) or Bose Einstein (BE) statistics is removed 
[see ref. 3, Eqs. (2.11-17)]: 

Cab(q; z) = Tr~ b~( -q )  h~(q; z) (3.1) 

where h~(q; z) is a one-particle correlation operator given by 

1 
hl(q; z ) = n  T r z u  z -  iL fa(q) (3.2) 

The quantum-statistical correlations are now absorbed in f :  

f = pn = rcp (3.3) 

where the projector ~ (anti-) symmetrizes the direct product of single- 
particle momentum eigenstates (we work exclusively in these states here): 

1 1 . . .u  1 
~=~.~l r  =S--~ Z ~z~ (3.4) 

a e S N  

7t~ Ikl "" kN> = r/I~l Ik~(~).--ka(N)> (3.5) 

with 

]kl . - . R N >  = I k x >  x . . .  x ]kN> ~ Ik> (3.6) 

The sum in Eq. (3.4) runs over all permutations a of N particles, and r/I< 
equals 1 for bosons, whereas for fermions it equals 1 ( - 1 )  for even (odd) 
permutations a. Finally, Tri...j = Tr/- . .  Trj denotes the trace for Boltzmann 
(i.e., classical) statistics. Note that in deriving Eq. (3.1) we have used that 

f . La = L(fa). 
We shall now evaluate the operator ht(q; z) with the help of cluster 

expansions and the projection superoperator /5~q., (and its complement 
01"q "s) defined by 

with 

and 

~ q . s =  ~ 7zopl.q.Slz~l, -1 . . . . . .  , _ Q _ .  = 1 - Px_q q # O  (3.7)  
a E S  s 

pl_-q.s= ~ p iqp l . . . r  ..... 

i = 1  

i ( P _ q a ) k k  , =  (kl pi_qa ]k'> :akk,~k;,ki+ q 

(3.8) 

(3.9) 

pi.. . j  = p i . . .  pj, pi =Pq=0i (3.10) 
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).~- 1 denotes the inverse of the permutation operator r% defined in Eq. (3.5). 
The use of p~q.S is motivated by the fact that due to translational 
invariance of the Hamiltonian, one has (cf. Appendix B of ref. 2) 

1 
h l ( q ; z ) = p l _ q h i ( q ; z ) = n T r 2 . . . N  P1 q P 2 N z _ i L f a ( q  ) (3.11) 

pl_.q.s represents then the completely symmetrized version of p l_qp2  .... , 
which takes the effect of the FD (BE) statistics properly into account (see 
also the discussion given in ref. 3, pp. 771-772). 

Now, with the aid of some formal manipulations, we derive in 
Appendix A the following result: 

[z -- iLo(1)] hi(q; z) 
N 

= ~ Tr2 .... a~ .... ( z ) E z - i L o ( 1 . . . s ) ]  
s = 2  

x ff15qShl .... (q; z) + nl(q; z) 

Here the cluster superoperator G~ .... (z) is given by 

1 1 
G~ .... (z)  iLi2 i O ~ q(L t 3  + L23) : , , ' ~ I23  = l ~  q 

z -- iL(12) z - iL(123) 

X - 
1 

z - i L ( 1 . . ,  s - 1) i ~ _ . . , -  1 [ ~ i -  

(3.12) 

1 
X (Lls+ "" + L s  is) (3.13) 

z - i L ( 1 . . . s )  

The operator hi .... (q; z) denotes the s-particle generalization of hi(q; z): 

N~ 1 
hi .... (q; z ) - Q(  N -  s)! Trs  + l ' N z -  iL  f a ( q )  (3.!4) 

The remaining one-particle operator ni(q; z) reads 

1 
n,(q; z) = ~  [1 + Nl(q; z)] Ulal(q)  (3.15) 

with 

N N !  N 
N , ( q ; z l = T r z . . . N  ~ (N_s)----~Gql .... (z)  Ol'q'Sf 2 (71iVl 1 (3.16) 

s = 2  i = 1  
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and 
N 

UI=NTr2 . . .N f  ~ O~li (3.17) 
i=1 

aij is a permutation superoperator which interchanges the indices i and j. 
Note that Nl(q; z) and the purely static factor UI are one-particle super- 
operators acting on everything to their right. Some properties of UI (and 
of its inverse U~ 1) can be found in Section 3 of I (see also Appendix B of 
ref. 18). 

We come now to the essential step in the derivation: We show in 
Appendix B that the projected part of h 1 .... (q;z) [i.e., Pl_~"h 1 .... (q;z)]  
occurring in Eq. (3.12) becomes a linear functional of hi(q; z) in the ther- 
modynamic limit (i.e., s N ~  0o, with finite density n =N/O). Explicitly, 
we have the following factorization theorem: 

px . . . .  h . .~(q;z)=~ ~ .... ~ (rlihl(q;z)f2...fs for I 2 ~  (3.18) - - q  1 .  

i 1 

where fi  is the reduced distribution operator, generally defined by 

N! 
f l  .... - - T r s + l . . . N f  (3.19) 

(N--s)! 

The permutation operator rc ~ .... is given in Eq. (3.4). The proof of formula 
(3.18) (see Appendix B) runs completely parallel to those given in refs. 2 4 ,  
where similar factorization theorems (in homogeneous systems) were used. 
We note that Eq. (3.18) is exact in the thermodynamic limit (the neglected 
terms are of relative order (2-1) and holds there for all z with Re z > 0. 

Next we insert formula (3.18) into Eq. (3.12), thereby obtaining a 
closed equation for hi(q; z). After some transformations (for details see 
Appendix C), we then finally arrive at the following Dyson-equation-like 
expression for the one-particle correlation operator h~(q; z): 

1 1 
h,(q; z) = ~ z -  iL0(1) - Bl(q; z) Ula ' (q)  (3.20) 

Here Bl(q; z) is a generalized collision (super-) operator given by 

1 
Bl(q; z) Oi(q, z)[z -- iLo(l)] (3.21) 

1 + Nl(q; z) 

where N~(q; z) is defined in Eq. (3.16) and the superoperator Dl(q; z) reads 

N N! N 

Dl(q;z)=Trz. . .u ~ 2  --(N--s) ------SG'~ .... ( z ) f  ~ a~iU( 1 (3.22) 
= i = 1  
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Let us conclude this section with some remarks. First we note that 
Eq. (3.20), which forms the main result of this section, is exact in the ther- 
modynamic limit and holds for all z with Re z>0.  It represents the 
generalization of the corresponding homogeneous expression obtained in 
Eq. (3.6) of I. As in that work, the main feature of our formalism is that 
in the collision operator B~(q; z) the dynamic correlations [originating 
from the z-dependent parts in Dl(q; z) and N~(q; z)] and the static correla- 
tions (originating from the equilibrium distribution f )  are clearly separated. 
This fact immediately allows us to identify those terms in B~(q; z) that are 
relevant for obtaining the quantum-statistical generalization of the classical 
Enskog theory. 

Finally, we note that Eq. (3.20) can be transformed into a non- 
Markovian linear kinetic equation for h~(q; t) by going back to time space: 

~ -  iLo(1) h~(q;t)= dt 'B~(q;t ' )hl(q;t- t ' )  (3.23) 

with initial condition 
1 

hz(q; t=0)=~ U~at(q) (3.24) 

The memory kernel BI(It; t) is the inverse Laplace transform of B~(q; z) 
given in Eq. (3.21). 

4. L INEAR Q U A N T U M  E N S K O G  E Q U A T I O N  

In this section we evaluate the generalized collision operator B~(q; z) 
given in Eq. (3.21), in the Enskog approximation, which will lead us to the 
linear quantum Enskog equation for inhomogeneous quantum fluids. We 
closely follow the discussion presented in Sections 4 and 5 of I. (Some 
repetition is therefore unavoidable.) As in that work, we mean by this 
approximation that in the dynamic part of Bl(q; z) only the binary colli- 
sion contribution (combined with a certain short-time limit) is retained, 
whereas the static factor f is treated exactly. Thereby the approximations 
will be such that in the limit of no static correlations the linear quantum 
Boltzmann equation is recovered (see Section 5), whereas in the classical 
limit the linear revised Enskog equation results (see Section 6). 

Now, in a first approximation step we replace in Bl(q; z) the factor 
[1 +Nl(q;  z)] -~ by 1 (the neglected terms contain at least three-particle 
dynamic processes) and furthermore z -  iLo(1 ) by z, being the leading term 
for large z (i.e., short times). Thus, we are left with 

Bl(q; z) ~= zDl(q; z) (4.1) 
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Next we replace D~(q; z) by its binary collision approximation. For that 
purpose we have to take the many-body effects due to FD (BE) statistics 
properly into account. This means we have to bring Dl(q; z) into a renor- 
realized form in which the dynamic s-particle contributions are explicitly 
grouped together. [For  instance, the s = 3  term in the unrenormalized 
form, Eq. (3.22), contains also a binary collision contribution due to the 
effect of the (anti) symmetrizer ~z occurring in f (see refs. 3 and 4).] This 
goal is achieved with the help of the resummation procedure discussed in 
Appendix A of I, which also holds for the projector P~q* considered here. 

As result we find [cf. Eq. (I.4.12)] 

zDl(q; z) hi(q; z) = - 2 Tr2 T~'2(z) z f122 + DTC (4.2) 
; = o  - -  i L o ( 1 2 )  

where we have introduced the following notations: 2?~2(z ) is the renor- 
realized Liouville t-matrix given as 

1 
T122(Z) = --/r12iL12 [Z-- iLo(12)] (4.3) 

z--  is 2) 

Here, rr12= 1 + r  t12, and the renormalized Liouvitle operator s 2) is 
defined by 

s 2) = Lo(12) + s (4.4) 

$12 V12 a - a V12 Sl2 (4.5) 

S~2 is the quantum-statistical weighting operator (4'1a-22) of the form 

S~2 = 1 + t/f12 + t/f~ (4.6) 

where t / = - 1 ( 1 )  for FD (BE) statistics. The generalized distribution 
operator f~2 is defined by 

N! 
- f ;  ( 4 . 7 )  f~" .... - -  Trs+~...N 

( N -  S)! 

with 

f~  = Z 1(2) e-~e;'~(~;z)~z, Z(2) = Tr e-~He;~'~(q;z) (4.8) 
N 

,q(q; z) = ~ a,iU~lh,(q; z) (4.9) 
i = 1  

Finally, DTC denotes dynamic triple (or higher) collision terms. 
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As in I [-see the remarks after Eq. (I.4.16)], we finally replace the free 
resolvent z/[z-iL0(12)] occurring on the rhs of Eq. (4.2) by its large-z 
(i.e., short-time) limit 1. As before, corrections of the form Lo/z are 
omitted. Therefore, the generalized collision operator B~(q; z) becomes in 
the Enskog approximation 

where 

Bl(q; z) h~(q; z) ~ BQE(z) hi(q; z) 

c~ 1 T BQE(z) h~(q;z)= ---~ x=o2 r2T~2(z)f~2 

(4.10) 

B~E(Z) is the linear quantum Enskog collision operator for inhomogeneous 
quantum fluids in its most compact form. A more explicit representation is 
obtained by carrying out the 2-differentiation in Eq. (4.11), which leads to 
two different contributions: 

B1QE(z) = B?E'CI(z)  nt- BQE'"(Z)  (4.12) 

Here, BQE'Cl(z) represents the quantum analog of the revised linear classical 
Enskog collision operator (see Section 6) and reads explicitly 

BQE'~ = --�89 ]~12(Z)[-f12(l + o12)-bTr3f123013 ] UI  1 (4.13) 

where iPl2(z) = i?~[ ~ 
On the other hand, B~E'"(z) results from purely quantum-statistical 

effects and therefore has no classical counterpart (it vanishes for r/= 0): 

1 1 
o?E ' r t (Z)  71 ~- - -  ~ Tr: 2?12(z ) iL~2 [Yi] 

iLo(12) Z 

1 
x [-z - iLo(12)] f12 (4.14) 

z -  is 

where s = s 2 = 0) and 

L~2[yl] a=rl(yl + Y2) V12a-rlaV~2(yl + y2) (4.15) 

y~ and a are arbitrary operators. 
A further interesting representation of BQE(z) is obtained by expressing 

i?~2(z ) in terms of the exchange-modified Hilbert-space t-matrices (3'18"19) 
defined by 

i~2(E+;2)= +i[Ho(12)--E] z/2 +i[-igi,(12;2)_E] V12 (4.16) 

(4.11) 
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and 

1 { 2 - i [ H o ( 1 2 ) - E ] }  (4.17) 
i~ (E  ; 2) = V~2 z/2 - i[/4(12; 2) - E]  

where E +- = E +_ iz/2 and 

/4(12; 2) = Ho(12 ) + S~2 V12 (4.18) 

H'(12; 2) = Ho(12 ) + V~2S~2 (4.19) 

are renormalized Hamiltonians [note that H and H '  are not self-adjoint 
and that H + ~ H  ', since a ( q ) + = a ( - q ) ] .  Making use of Eq.(D.13) 
derived in Appendix D of ref. 3, we find 

BQI hi(q; z) 

= ~ - ~ x - o  i +~ dETr2{i; (E ;2)g 2(E;z) 
co 

-g~2(E;  z) i~ (E+;  4) 

ff~2(E-. 2) ~ . -- , ga2(E, z) t+12ttE+" 2),  S~2 g~ 

- ig~ - ) S~2i ,2(E-;  2) g2z(E; z) Z~(E+; 2)} (4.20) 

with the following abbreviations: 

E g12( ;z) ~ o + =f12g12(  E )+ g ~  )f~'2 (4.21) 

1 
g~ E +- ) - (4.22) 

z/2 + i[Ho(12 ) -- E] 

Note that Eq. (4.20) differs slightly from the corresponding expression 
obtained in I [cf. Eq. (5.8) there] due to the inhomogeneity of the system. 
A further evaluation of the representation (4.20) by scattering length 
expansion of i~  shall be discussed elsewhere. 

Having determined the quantum Enskog collision operator, we are 
now in the position to write down its associated kinetic equation, which is 
obtained from Eq. (3.23) in the Markovian limit (see Section 5 of I). For 
this we have to assume that the kernel BQE(t) in Eq. (3.23) decays rapidly 
to zero for times t on the order of the mean free time Zm and that Zm >> Vc, 
where Zc is a typical binary collision time. This means we now use BQE(t) 
beyond the time regime for which it has been derived [BIQE(t) resulted from 
Bl(q; t) in a short-time limit]. Note that the same situation is met in classi- 
cal hard-sphere systems ~8~ and that there the Enskog theory leads to very 
good agreement with experimental data. 

822/61/1-2-31 
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Now, the Markovian limit of Eq. (3.23) becomes in the Enskog 
approximation 

where 

[ 6  _ iLo(1) |  ha(q; t) = B~Ehl(q; t) (4.23) 
q 

57 J 

B ~ E =  l im B~E(z) (4.24)  
z ~ 0  + 

The initial condition is given in Eq. (3.24). Equation (4.23) is the linear 
quantum Enskog equation governing the time evolution of the equilibrium- 
time correlation operator hi(q; t) of an inhomogeneous quantum fluid. 

We conclude this section by expressing the dynamic structure factor 
and the external mobility in terms of the Enskog collision operator. Using 
Eqs. (2.17) [(2.22), respectively], (3.1), (3.20), and (4.10), we find 

1 1 
S(q; co) = -re ~ ~ o+lim Re Tra exp(iq �9 rl) e - ico - iLo(1 ) - B~E(e -- ico) 

x U1 exp(- - iq .  21) (4.25) 

and 

1 - e - e ~  
Re #~(q; co) lim Re Tra j ~ ( - q )  

,.("2(.0 e + o  * 

1 
• Vajl~(q) (4.26) 

where the current density operator ix(q) is given in Eq. (2.19). From the 
dynamic many-body point of view, the problem of the evaluation of, e.g., 
S(q; w) and #~(q; co) is solved--it has been converted to a complicated 
one-body problem, the further evaluation of which will be investigated 
elsewhere. 

5. B O L T Z M A N N  LIMIT  OF BeE(z) 

In this section we show that Eq. (4.23) reduces to the inhomogeneous 
linear Boltzmann equation in the limit of no static correlations (see also 
Section 6 of I). 

To begin with, we note that our basic function Cab(q; t) given in 
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Eq. (3.1) can be expressed in terms of a "Wigner correlation function" 
h(q, p; t): 

C~b(q; t ) = ~  (p + q/2l b l ( - q ) I p -  q/2) h(q, p; t) (5.1) 
P 

where 
h(q, p; t )=  ( p -  q/21 hi(q; t)[p + q/2) (5.2) 

We are now interested in the linear Boltzmann equation for h(q, p; t). For 
this we consider the matrix element ( p -  q/2l -IP + q/2) of Eq. (4.23) and 
find 

(~+ip 'q )  h(q,p;t)=lp-q BQEhl(q;t) p+ q ) (5.3) 

Now neglecting static correlations in the collision term in Eq. (5.3), we 
can replace the two-particle distribution operatorf~ 2 occurring in B~ E [see 
Eq. (4.11)] by n-12~~176 J2 , where f0.~ is equal to f~  given in Eq. (4.7), but 
with the interaction V put equal to zero. The f ' s  occurring in if'~2 are also 
to be replaced b y f  ~ Furthermore, we neglect inhomogeneity corrections of 
order q (and higher) in the collision term which result from the fact that 
hi(q; t) is not diagonal, i.e., (Pl hi(q; t) IP') ~cSr It is not difficult to 
see that this amounts to replacing hi(q; t) (occurring in o,~ f l  ) by the 
diagonal operator/~l(q; t) defined as 

(Pl/~x(q; t ) IP ' )  = 6pp,h(q, p; t) (5.4) 

and neglecting all other q dependences. Thus, in the limit of no static 
correlations we have 

( p - q / 2 ]  B~Eh~(q; t)Ip + q/2) 

-~ - - -  l i m  [ T r  2 ~ ~ o,;~ o,~ Ta2(z)f~ f2 ] p p - [ l + C ( q ) ]  (5.5) 
z--~O + 

Since fo,~ is now diagonal, the rhs of the foregoing equation is 
formally equivalent to the Boltzmann limit obtained in the homogeneous 
case in I [see Eq. (1.6.1)]. Therefore, we can use the result given there to 
obtain finally the inhomogeneous linear quantum Boltzmann equation 
from Eqs. (5.3) and (5.5): 

~ m p~" q h(q, p l ; t )  

P2,P'I,q2 

• (1 + r/fol)(1 o o o + tlfp2) fp~fp'2 ['~(q' Pl, t) + h(q, P2 ; t) 

-~(q, p~; t)-~(q, p~; t)] (5.6) 
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Here the exchange-modified scattering cross section f is given by 

"c(PtP2; P'lPl) --- I (PAP21 t~(~Pl -}- '~p2 ) 1( 1 § ~lz) tPlP~)[ 2 

x a(%, + %2 - %'1 - %1) (5.7) 

where i i ) (E)=l imz~o+ i~(E-iz;2=O) [see Eq. (4.17)] depends func- 
tionally on the Fermi (Bose) distribution f o =  (p[ fo  IP) due to many- 
body exchange effects. Here ep = p2/2m is the kinetic energy and 

h(q, p; t )=  [(1 + r/f~ f ~ l h(q, p; t) 

Finally, neglecting static correlations, we find for the initial condition 
of h(q, p; t) 

1 o 
h(q, p; t = 0) _----* ~ f , ( 1  + r/f ~ ~(p)- [1 + C(q)] (5,8) 

where we have used Eq. (3.24) and the relation Ulal = f ~  + q f o ) +  
static correlations, derived in I [-see Eq. (I.3.14)]. 

For a derivation of the nonlinear quantum Boltzmann equation (with 
exchange-modified cross section) based on the Green's function formalism, 
see Danielewicz. (23) 

6. C L A S S I C A L  L IMIT  OF B~E(z) 

Let us now consider the classical limit of B?E(z) given in Eq. (4.12). 
Replacing the quantum operators by their classical counterparts and the 
trace operation by a phase space integral, we see that BIQE(z) reduces to 

; Z) hCl(x1, q; z) = - f  ds 2 Tell(Z) F12hCl(Xl, q; z) (6.1) BE, CI(x 1 

where 

[ f -Cl~x ] [U~I] -1 (6.2) F12--- pc21(Xl ,X2)( l+f f l2)"b d x 3 P 3 t  1, x2, x3)o'13 

with the following notations: xi = (ri, pi) denotes position and momentum 
of the ith particle. T]l(z) is the classical Liouville t-matrix (2'24-2s) given by 

1 cl �9 cl T12(z) ['z -- iL~1(12) ] (6,3) = -- lLl2  Z -- iLr 
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where LC1(12) = L~l(12) + L]~ with 

L~l(12) = i (  ~ ~r2) - - -  p~" + p ; "  (6 .4 )  
m ~rl 

The canonical distribution function p~(X) reads 

pCl(X) = fpo(P) p v(R)  (6.6) 

with X=(x~ ..... XN), etc., and where ~o0(P)=cp0(Pl).--qgo(PN ) is the 
Maxwell-Boltzmann distribution, 

(Po(P)- \2--~m ] e-(~/2m)"2 (6.7) 

and p v(R) the configurational part, 

pv(R) = Q-~e -av, Q= f dr l . . .drue  -av (6.8) 

with 
N 

ad(q) = ~ 6~ exp( - - iq ' r i )  (6.13) 
i=1 

ps ~1 denotes the reduced distribution function: 

p~l(xl ,..., xs) = Cpo(pl ..... Ps) ns(rl ,..., rs) (6.9) 

with 
N! 

ns(rl '"" rs) = ( N -  s)------~ J drs + 1"" dru P V(R) (6.10) 

The classical version of U1 reads 

mpo(pl) + f dx2 ~oo(pl, P2) n2(rl, r:) a12 (6.11) U~I= 

Finally, the function hCl(xl, q; z) is the classical limit of h~(q; z) defined in 
Eq. (3.2) and is given by 

1 
h~ q; z) = n f d x 2  . . . dXN z -- iL ~l P~ a~l(q) (6.12) 
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being the classical limit of Eq. (2.14). In the notation commonly used in 
classical kinetic theory (see, e.g., refs. 10 and 11), Eq. (6.12) becomes (for 
q r  

h (x, q; z) = [exp(-z t ) ]  f dx' [ e x p ( - i q ' r ' )  d~l(q ') F(x, x'; t) dt 

(6.14) 

with the one-particle, one-particle correlation function (l~ 

" t )=  6 ( x - x i )  6(x ' -x j ( t ) ) -nq)o(p '  (6.15) F(x, x , 
z j 1 cl 

where ( . ) ~  denotes the classical phase average in the canonical ensemble. 
We note that Eq. (6.2) has the same form as obtained in I for the 

homogeneous case [see Eq. (6.5)], with the only difference that now the 
time correlation function h(xl, q; t) depends on the position rl due to the 
inhomogeneity of the fluid. 

Equation (6.1) is not yet of the form known from classical Enskog 
theory. To arrive at this form, some transformations are necessary. Making 
use of functional derivative techniques, we show in Appendix D that F,2 
given in Eq. (6.2) reduces to the following form: 

F,2 = {~0o(p,, p2)[1 + v2(rl, r 2 ) ] ( 1  + 0"12 ) 

f } n (6.16) "[- ~90(Pl, P2) dx3 (Po(P3) H(rl, r2[r3) 0",3 ~Po(Pl) 

where vz(r,, r2) is the pair correlation function given as 

n2(rl' r2) 1 (6.17) v2(rl, re) n 2 

and H(rl, r2lr3) represents the sets of all Mayer graphs that can be 
obtained by replacing one field point by a root-point in the Mayer graph 
representation of v2(r,, r2). ('0''1'29-3') In terms of functional derivatives, this 
can be expressed as 

6 n~(r)=n H(r,, r2 I r3) = n ~ v2(rl, r2; nl(r)) (6.18) 

where v2(r,, r2; nl(r)) is a functional of the local density n,(r) (for details 
see Appendix D). 
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with 

Inserting this result into Eq. (6.1), we finally obtain from Eq. (4.23) 

[ ~---=--iL~1(1)1 hca(xl, q; t)=BE'cl(xl)hd(Xl, q; t) (6.19) 
LOt J 

BE'CI(xl) = lim BE'd(Xl; Z) (6.20) 
z ~ 0  + 

BE'~ ;z) = - f dx2 T]iz(Z) F12 (6.21) 

where F12 is given in Eq. (6.16). The initial condition reads [see Eq. (3.24)] 

ca 1 cl cl 
h ( x l , q ; t = 0 ) = ~ U l a l ( q )  (6.22) 

with U~ l given in Eq. (6.11). 
Redefining our quantities hd(Xl, q;t) and BE'CI(xa) as ~0o1(pl) 

h~ q; t) and q~ol(pl)BE'C~(xl), we see that Eq. (6.19) formally agrees 
with the revised linear classical Enskog equation as obtained by van 
Beijeren (1~ [see his Eqs. (8.16) and (11.3)] and van Beijeren and Ernst. (m 
As in l (see Section 6 there), the only difference is that here we consider 
more general short-range potentials than the hard-sphere interaction, with 
the consequence that in our Enskog collision operator the z-dependent 
t-matrix, T~2(z), for continuous potentials occurs instead of the binary 
hard-sphere collision operator. For a discussion of ol T12(2 ) and its hard- 
sphere limit see McLennan (ref. 28, p. 272). Note that a similar form of the 
classical linear Enskog equation [containing also T~l(z)] was obtained by 
Mazenko (see Section 6 of ref. 27) in his fully renormalized kinetic theory. 
For an extension of the hard-sphere Enskog theory to a dense classical 
square-well fluid see also Karkheck et a/. (32) and Leegwater eta/. (33) (this 
extension, however, does not reduce to the Boltzmann equation in the low- 
density limit, which is a serious drawback of this theory). 

7. C O N C L U S I O N S  

The linear revised Enskog equation for classical hard spheres is 
generalized to normal quantum fluids. Thereby static correlations coming 
from the equilibrium distribution and quantum-statistical correlations due 
to FD (BE) statistics are fully retained, whereas in the dynamic part only 
uncorrelated binary collisions are taken into account (as in the Boltzmann 
equation). This generalized Enskog theory is applicable to systems with 
continuous short-range central interaction potentials. 
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We express physically important quantities such as the dynamic struc- 
ture factor (measured in neutron or light scattering experiments) and the 
nonlocal mobility tensor in terms of a linear quantum Enskog collision 
operator. Thereby we go beyond the time regime for which this Enskog 
collision operator has been derived. However, exactly the same situation 
already occurs in the classical hard-sphere Enskog theory (as pointed out 
by van Beijeren and Ernst in Section 2 of ref. 8), which, nevertheless, leads 
to very good agreement with experimental data, in particular for Ar. (8'12) It 
is therefore to be expected that the quantum Enskog theory derived here 
when applied to real systems such as normal 3He and 4He, spin-polarized 
hydrogen, Ne, nuclear matter, etc., leads also to very good results in 
comparison with experiments. 

In the limit when static correlations are neglected, the inhomogeneous 
linear quantum Boltzmann equation is recovered, and in the classical limit 
the linear revised Enskog equation results. 

Concluding, we remark that it would be interesting to know whether 
the linear (quantum) Enskog equation obtained here fulfills an H-theorem 
similar to that proven by R6sibois (36) in the classical hard-sphere case. For 
an H-theorem applied to the square-well fluid see also ref. 37. 

A P P E N D I X  A 

In this Appendix, starting from Eq. (3.11), we derive Eq. (3.12) with 
- - 1  - - - s  - - a  . - - s  the help of cluster expansions and the relation P_q + Q q = 1. 

By using the identity 

1 1 1 1 
x -  Y rx-----f (A.1) 

we obtain in a first step with L = Lo + Lv and PiLo(i  ) = 0 

1 
Zhl(q; z)  = n Tr2. . .  N f a ( q  ) + n Tr2... N iL  z - iL f a ( q )  

1 
= - ~  U t a l ( q ) +  iLo(1) hi(q; z) + c~ (A.2) 

with 

N~ 1 
c~ = g2(N- 2)! Tr2 .--N iL12 z -- iL  f a ( q )  (A.3) 
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Consider now cA and replace there Lv by 

Lv=O12qLv(12)+[(p12q+O~q)Lv--O~qLv(12)] (A.4) 

with Lv(1 ""s)=~,l<~i<j<~sLi j. Using Eq. (A.1) and P~qh-~)l_2q= 1, we 
then obtain, with TrijLij . . . .  0 and ULo(i ) = O, 

C1 
N~ 

g2(N-  2)! 
Tr2...uG?z(Z ) fi12q l+iLvz____ ~ + 

+ (N-  3) O~qi(L13 + L23)z 1--~} fa(q) (A.5) 

Consider now the last term in Eq. (A.5) and replace there Lv by 

Lv= Q12~Lv(123) + [-(p12~ + 012~) -123 L v - Q  qLv(123)] (A.6) 

--123 (~123 Using Eq. (A.1) and P_q + ~_q  = 1, we then obtain 

C 1 
N~ 

s  2)! 
Tr2..NG~2(z){[z-iLo(12)]fi~q 1 .  ~ +  ~)~q}fa(q) 

N! 
s  3)! q{123 E 1 1  123 Tr2...u G123(z ) P_q 1 + iLv--z_iL + ~" q 

+ ( N - 4 ) - 1 2 3 .  ~ / L t  Q _q/(tl4 -3 t-- L24 -k- L34 ) _ fa(q) (A.7) 

Iterating these steps and using Eq. (A.2), we arrive at the desired result, 
Eq.(3.12). Thereby the 01_q"-projectors actually occurring in the 
denominators of G~ .... (z) have been omitted in (3.13), since there the pl  .... . --q 
parts in Q ~  = 1 -  p~.q.s lead to vanishing contributions in the thermo- 
dynamic limit due to the Pq ruleJ 2) 

A P P E N D I X  B 

In this Appendix we sketch the proof of the factorization theorem 
(3.18). We can be very brief since almost the same result with the diagonal 
projector p1 .... (instead of pl.q., considered here) has been proven in ref. 3. 

We first note that 

/~l_.q. hi ...~(q; z) = re1 .... p l  .... q hi .... [q," "z') 
s 

= 7~1 . . . .  Z 171ipl-q P2  . . . .  h i  . . . .  (q;  z )  
i=1 

(B.1) 
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since ~ s  and Z . . . .  ~ =~1 .... . In the last equation we have used 
Eq. (3.8) and the fact that hi .... (q; z) is symmetric in 1,..., s. Now, we make 
use of the factorization formula proven in ref. 3 [see Eq. (3.42) there] with 
the difference that instead of the projector P~ ..... , we consider here 
p~_qpZ .... ( q # 0 ) .  This difference, however, has no influence on the 
factorization formula, since P~ and P~ obey the same Pq rule (cf. ref. 2, q 

Section 4) on which the proof is based. Therefor we have 

pl_qpZ .... hi ..... (q;z) 

= p~_qpZ .... ~ alih~(q;z)fz...f~ for g Z ~ o o  (B.2) 
i = 1  

Inserting this result into Eq. (B.1) and using that P _q f,. = 0 for q v e 0 (since 
P ~ = f ~ )  and h~(q;z)=P~qh~(q;z), we arrive at the desired result, 
Eq. (3.18). 

A P P E N D I X  C 

The aim of this Appendix is to derive Eq. (3.20). To begin with, we 
insert the factorization formula (3.18) into Eq.(3.12). Using that 
Lo(i) ~ = 0 and therefore 

[z-iLo(1 . . - s ) ]  ~1 .... ~ amihm(q;z)fz"'f, 
i = 1  

= ~zl .... ~ ali~ll(q;z)f2""f~ (C.1) 
i = 1  

with ,~m(q; z) = [ z -  iLo(1)] hi(q; z), we then obtain 
N 

~ l ( q ; z ) =  ~ Tr2 .... G~ .... (z)~ 1 .... ~ amihl(q;z)fz.. .f ,+nl(q;z) (C.2) 
s = 2  i = 1  

Next we note that for q r 0 and due to the Pq rule (z) one has 

hi(q;  Z) fz"" 'f~ = P l - q  ~tl(q; Z) fz"" "f~ 

pm .... ~ - - 1 ~  , . 
= _q 71 . . . .  J1  mtq, z ) [ l + ~ ( ~ - l ) ]  ( c . 3 )  

which inserted into (C.2) yields 
N 

hi(q; z ) =  ~ Tr 2 .... G~ .... (z) ~z 1 .... 1 .... P qfm...s 
s = 2  

x ~ ~riif~lhl(q;z)+nl(q;z) (C.4) 
i = 1  
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Now, introducing for h~(q; z) the identity 

hi(q; z) = Ulf~h~(q; z) 

where 

]~l(q;z)= r U l f ~ l ]  - lh l (q ;z )  

489 

(c.5) 

(C.6) 

and following the transformation steps given in Appendix A of ref. 3 (with 
p1..., replaced by p~q.s), we arrive at 

N N! 
h~(q; z) = ~ ( X -  S)--------~ Tr2...u G~ .... (z) P~q"f 

8 = 2  

N 

• ~ al, u~-m'hl(q;z)+nl(q;z) (C.7) 
i = 1  

Replacing/~l_.q.~ by 1 - Q~q~ and using for nl(q; z) Eq. (3.15), one finds 

~l(q; z) = [Ol(q; z) - Nl(q; z)] ~l(q; z) 

1 
+ [1 + N~(q; z)] ~ U~al(q) (C.8) 

where Dl(q; z) is defined in Eq. (3.22). Simple manipulations lead then to 
the desired result, Eq. (3.20). 

A P P E N D I X  D 

Using functional derivative techniques, (34'35) we show here that the 
static correlation operator F12 defined in Eq. (6.2) reduces to the form 
(6.16). For that purpose let us introduce a generalized distribution function 
of the form (27) 

P(X;O)=Z-~[tp]exp[-flH-~ ~ O(x,) 1 
i = 1  

and its reduced version 

(D.1) 

pfixl  ..... xs; ~P) - ( N -  s) - ~ .  dxs+~..,  dXN p(X; ~t) (D.2) 

Here, p, Ps, and the normalization constant Z depend functionally on the 
field ~(ri, pi), with the consequence that p(X; ~) no longer factorizes into 
momentum and position parts, in contrast to p(X; ~ =-O)= q~o(P)-p,(R). 
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Now F~2 is considered as a functional of ~. For notational simplicity, 
however, we shall not indicate this ~ dependence explicitly. 

Taking functional derivatives of p~ with respect to ~, we then find 

p2(xl, x2)- 1 5pl(Xt) 
- - - ' [ - p l ( x l )  Pl(X2)--pl(Xl)•(Xl-- X2) (D.3) 

and 

p3(xl, x2, x3)= 
1 6p2(xl, x2) 

"-I- p2(Xi, X2) pl(X3) 

--p2(Xl,X2)[(~(Xl--X3)-]-(~(X2--X3)] (D.4) 

Using the last relation in the second term of F~2 given in Eq. (6.2), we 
obtain [with the abbreviation hi = h~ , i, q; z ) ]  

1 f ~p2(XI' X2) U31h3 (D.5) F12hl= - -~ dx3 1~ i//(X 3 ) 

where we have used that (for q r 0) 

f dx~ pl(xl) U~lhl 

N 
~ f dNxp(X)  2 (TliUl lhl 

i=l 

1 1 
= l f dxl Ui Ullhl  = ~ f dxl hl = ~ ( a(q) )cl=O (D.6) 

Next we show that h I = U ( l h  1 can be expressed in terms of the inverse 
of 6p~(xl)/6~(x): 

6~(Xl) 
h 1 ~- --fl [ ax 2 - - -  ff12hl 1 

~pl(X2) d (D.7) 

For  the proof we first note that with Eq. (D.3) one has 

hl = glfll = Ipl(Xl)'q- f dx3 P2(X1, X3) ff l3] [ll 

f 6pl(xl ) - 1 dx 3 O. 13 hi 
[~ 6~(x~) 

(D.8) 
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where we have used again Eq. (D.6). Next, multiplying 
equation by 

6~(x1) -~  f dx2 6,o1(x2) 0"12 

the foregoing 

(D.9) 

from the left and making use of the fact that 

f dx2 dx 3 ~ t ( X l )  6Pl(X2) r ~pl(X2 ~ ~ FI3 ~- f dx3 6(xt- x3)]~3 ~ /~1 (D.IO) 

we arrive at Eq. (D.7). Inserting then Eq. (D.7) into Eq. (D.5), we find F12 
in its most compact form, 

~p2(x1, x2) 
F12hl = J dx 3 6pl(x3 ) h 3 (D.11) 

Upon writing for P2 

p2(Xl, X2) 
p2(Xl, X2) = Pl(Xl) pl(X2) (D.12) pl(xl)pl(x2) 

F~2 becomes 

~ 1  h F12hl =p2(xl, X2)(1 +0"12) Pl(Xl) 1 

6 
+pl(xl)pl(x2) f d x 3 [ ~ v a ( r l , r 2 ) ] h  3 (D.13) 

Here, we have introduced the pair correlation function v2, also a functional 
of O [Pl(X; 0), respectively], 

where 

Pz(Xl, x2) n2(rl, r2) 
v2(rl,r2) pl(xl)pl(x2) 1 nl(rl)nl(r2) 1 (D.14) 

rts(rl ..... rs) = f dpl . . ,  dps ps(Xl ..... x~) 

U~ f =Q-lEVI (N-s)~------~. dr,+1 ...dru 

xexp[-flv--fl ~" ~(ri)] 
i = 1  

i = 1  
(D.15) 
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with 

exp[  - f i ~ ( r ) ]  = f dp qgo(p) exp[  - fl~b(r, p ) ]  (D.16) 

depends only on the posit ion r. Therefore,  we can consider Y2 also a 
functional of ~ [nl(r ;  ~), respectively].  Represent ing v2[r l ,  r2; n~(r; ~ ) ]  as 
a power  series in nl(r;  ~)  (virial expansion (29-31)) and using that  

6 
nl(r ' ;  ~ ) -  - -  n l ( r ' ;  ~ ) =  6 ( r -  r ' )  (D.17) 

(~pl(X; ~/) 6n,(r;  ~)  

one obviously has 

6 
v2(rl, r2; nl(r;  ~)  ) v2(rl, r2; nl(r;  ~))  (D.18) 

6Pl(X3; 4)  ~nl(r3; ~)  

Insert ing this into Eq . (D.13)  and setting 4 = - 0  [i.e., n l ( r ; ~ ) = n ] ,  we 
finally arrive at the desired result, Eq. (6.16). 
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